# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "VARcpDetectOnline" in publications use:' type: software license: MIT title: 'VARcpDetectOnline: Sequential Change Point Detection for High-Dimensional VAR Models' version: 0.1.0 doi: 10.32614/CRAN.package.VARcpDetectOnline abstract: 'Implements the algorithm introduced in Tian, Y., and Safikhani, A. (2024) , "Sequential Change Point Detection in High-dimensional Vector Auto-regressive Models". This package provides tools for detecting change points in the transition matrices of Vector Auto-Regressive (VAR) models, effectively identifying shifts in temporal and cross-correlations within high-dimensional time series data. The package includes functions to generate synthetic VAR data, detect change points in high-dimensional time series, and analyze real-world data. It also demonstrates an application to financial data: the daily log returns of 186 S&P 500 stocks from 2004-02-06 to 2016-03-02.' authors: - family-names: Tian given-names: Yuhan email: yuhan.tian@ufl.edu - family-names: Safikhani given-names: Abolfazl email: asafikha@gmu.edu repository: https://helloworld9293.r-universe.dev repository-code: https://github.com/Helloworld9293/VARcpDetectOnline commit: db0f21dc0bfbcc0db8d8a150f180c812412afe1c url: https://github.com/Helloworld9293/VARcpDetectOnline contact: - family-names: Tian given-names: Yuhan email: yuhan.tian@ufl.edu